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microfluidics for chemistry
(... & a little biology)
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microfluidics?

“microfluidics describes the behaviour, control and manipulation of
fluids that are geometrically constrained within sub-microliter
environments...

...the use of microfluidic devices offers an opportunity to control
physical and chemical processes with unrivalled precision, and in turn
provides a route to performing chemistry and biology in an ultra-fast

and high-efficiency manner”
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why miniaturize?

 cost economies through micromachining ® reduced sample/reagent & power consumption ® portability ¢

Anal. Comm. 2001, 36, 213

Angewandte Chemie 2007, 119, 2933

* superior performance (speed, efficiency & control) ¢ facile process integration &

automation ® high analytical throughput ® functionality *

“superior quality and rate of generation of chemical and biological information”
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fluid flow on
the small scale

large surface area-to-volume ratios allow for highly
efficient mass & heat transfer.

mass and energy are transferred quickly when creating or
homogenizing solute & temperature gradients.

* as scale decreases fluids are increasingly influenced by

viscosity rather than inertia, which leads to laminar flow.

* high surface area-to-volume ratios ensure that surface

tension influences and dominates fluid behaviour.
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the beginning: Stanford GC chip

A Gas Chromatographic Air Analyzer Fabricated
on a Silicon Wafer

STEPHEN C. TERRY, MEMBER, IEEE, JOHN H. JERMAN, aNp JAMES B. ANGELL, FELLOW, IEEE

Abstract—A miniature gas analysis system has been built based on the
principles of gas chromatography (GC). The major components are fab-
ricated in silicon using photolithography and chemical etching tech-
niques, which allows size reductions of nearly three orders of magnitude

to i i The

system consists of a sample injection valve and a 1.5-m-ong separating
capillary column, which are fabricated on a substrate silicon wafer. The
output thermal detector is batch i and
integrably mounted on the substrate wafer. The theory of gas chro-
matography has been used to optimize the performance of the sensor
so that ions of gaseous ‘mixtures are in
less than 10 5. The system is expected to find application in the areas
of portable ambient air quality monitors, implanted biological experi-
‘ments, and planetary probes.

Manuscript received May 22, 1979; revised July 30, 1979. This work
was supported by the National Institute for Occupational Safety and
Health under Contract 210-77-0159 and by NASA under Grant NGR
05-02-690.

The authors are with Stanford Electronic Laboratories, Stanford
University, Stanford, CA 94305.

L. INTRODUCTION

HE VARIETY of transducers and sensors which have
been fabricated in silicon has steadily increased as chemi-
cal etching and photolithographic techniques have been re-
fined. This miniaturized gas analysis system has been developed
as a result of the ability to fabricate complex three-dimensional
structures in silicon, a process which has been labeled “micro-
hining.” These mi hini hni have been used
to form a sample injection valve and separating capillary col-
umn on a single silicon substrate wafer. A thermal conductivity
detector is separately batch fabricated using integrated circuit
P ing i and is i 1 d on the sub-
strate wafer. The electrical output from the sensor is a result
of both the gas chromatography process which takes place in-
side the etched silicon separating column and the action of the
detector on the output gas stream.
Presently available miniature gas sensors lack the ability to

0018-9383/79/1200-1880$00.75 © 1979 IEEE

chromatogram of 7
hydrocarbons using
a silicone oil
stationary phase
and helium carrier

column width 200 um

column depth 30 um
column length 1.5 m

IEEE Trans. Electon Devices, 1979, 12, 1880



chromatography on a ch

Design of an Open-tubular Column Liquid Chromatograph Using Silicon Chip Technology

A. MANZ*, Y. MIYAHARA, J. MIURA, Y. WATANABE, H. MIYAGI and K. SATO
Central Research Laboratory, Hitachi Ltd., 1-280 Higashikoigakubo, Kokubunji, Tokyo 185 (Japan)

Abstract

A novel concept of high pressure liquid chro-
matography is presented, involving a silicon chip
with an open-tubular column and a conducto-
metric detector, a chip holder and a pressure pulse
driven injector using a conventional liquid
chromatography pump and valves. The design and
optimization of the chromatograph and the
chip are discussed. A 5 x 5 mm chip containing an
open-tubular column of 6 um x 2 um x 15 cm was
fabricated, which has theoretical separation
efficiencies of 8000 and 25000 plates in 1 and
S min, respectively. The total column volume is 1.5
nanoliter and the detection cell volume 1.2 picol-
iter.

——— T
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non-retained component [2, 3]. Until now, only
fused silica and glass capillaries have been used as
columns. The use of a silicon wafer for producing
an open-tubular LC column similar to the ‘Stan-
ford gas chromatograph’ [4] seems attractive, es-
pecially for reducing the column inner diameter,
the column length and for an easy positioning of
the detection sensor. Such an LC chip is a combi-
nation of the high selectivity of an LC separation
with the low production cost of a lesser selective
chemical sensor and could be an excellent alterna-
tive for many types of conventional LC and sens-
ing techniques.

Theory

x3. 8k @021
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columnlength 15 cm
cross-section 6um x 2 um
column volume 1.5nL
detection volume 1.2 pL

Sensors & Actuators B1, 1990, 249
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making microfluidic devices is easy

Anal. Chem. 1998, 70, 4974—4984 Photoresist

Silicon wafer

Rapid Prototyping of Microfluidic Systems in

Poly(dimethylsiloxane) — > — >
David C. Duffy, J. Cooper McDonald, Olivier J. A. Schueller, and George M. Whitesides* S

pin-coating

Photomask Ultraviolet

—

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138

This paper describes a procedure that makes it possible
to design and fabricate (including sealing) microfluidic

in an el ic material—poly(di
(PDMS)—in less than 24 h. A network of microfluidic
channels (with width >20 gm) is designed in a CAD
program. This design is converted into a transparency
by a high-resolution printer; this transparency is used as

genetic analysis,' clinical diagnostics,>-!* drug screening,'® and
environmental monitoring.'®

UTAS perform the functions of large analytical devices in small,
often disposable, units.'~* The potential benefits of #TAS, relative
to systems of conventional size, include (i) reduced consumption
of samples and reagents, (i) shorter analysis times, (iii) greater
sensitivity, (iv) portability that allows in situ and real-time analysis,

a mask in photolithography to create a master in p
relief photoresist. PDMS cast against the master yields
a polymeric replica c ining a network of ct Is. The

and (v) disposability. Asac q e of these potential benefits,

there has been considerable interest in the development of
uTAS 89

PDMS stamp

Analytical Chemistry, 1298, 7Q, 4974
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continuous flow PCR

» 20-cycle PCR of DNA gyrase gene of Neisseria gonorrhoeae in times as low as 90 seconds.
* utility compromised by high surface area-to-volumes and residence time distributions.

Science, 1998, 280, 246



10/42

super

SZ:)L;Latteesd r;r:r?gtféers nanoparticles aggregates
SRR | TR Ay - X o o m - u p
2 | RS ", *
' PO . °

N ; !
s A i )
[ N ALLIIOON, N
S nucleation concentration
§ _______________________ saturation c_o_n_centration
@ * nanoparticles are characterized by crystal radii which are
time small relative to Bohr radius — tunable optical and
= electronic properties.
« properties depend on the size & shape of nanoparticles.
Ar University of Utaf  high monodispersity needed for many applications.
Cs & FA-oleate
Q l , * current synthetic routes are complex & rely on
= O = constrained growth, kinetic control or post hoc product
- . . | selection to yield high quality particles.
u - * rapid nucleation and controlled growth enabled by
e o ..

80°C - ensuring rapid reagent mixing and uniform reaction

conditions. Chemical Communications, 2002, 1136, ACS Nano 2018, 12, 5504



® aim is to create an autonomous ‘black-box’ system
to controllably synthesize nanoparticles.

e the system incorporates a reactor, detector, control
algorithm and a means of changing system
variables (such as temperature, reaction time and
reagent concentration).

* the system is updated in a way that aims to
minimize a scalar dissatisfaction coefficient

describing an observation.
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target wavelength = 530 nm
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..but continuous flows are
problematic

slow mixing high dispersion
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droplets are completely isolated and define individual
chemical/biological reactors.

droplets can be generated using passive tools such as
flow-focusing geometries and tee-junctions.

droplet volumes can be defined with precision (i.e.
monodisperse).

mass transport occurs without dispersion (no residence
time distributions).

droplet size and payload can be varied rapidly and

precisely.

droplets can be generated at frequencies > 1 kHz.

droplet-based
microfluidics

oil =—»

oil —»

water =—»

oil —»
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T junctions

erupting from side channel

penetrating liguid stream

blocking liquid stream

getting squeezed by liquid

filling

squeezing

 continuous and dispersed phase are injected  droplets are large enough to touch the channel
from two branches of a T-junction. walls but do not wet the walls since 6,5 > 6,/

 droplets arise as a result of the shear force and (w = water, 0 = oil, s = substrate).

interfacial tension at the fluid-fluid interface. « atlow Ca, pressure build up is responsible for

+ G, must be sufficiently high in order to avoid droplet formation, at high Ca, viscous shear is

destruction of plugs by shear. Important.
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flow focusing and co-flows

Oil

@boo}\i) () He)
| =4

Oil

Oil —
=2 0 0 I— =0 O
Oil — S
« flow-focusing geometry - 3D or 2D immiscible + co-flow geometry - dispersed and continuous
flows are accelerated before entering a nozzle phase fluid streams are united by co-flowing
or constriction, where pressure & viscous stress immiscible fluids through a tapered capillary in
elongate the inner fluid, which eventually which streamwise forces exceed interfacial

breaks. tension.



Janus

Gelation

Single core

Rupture

Multicore Onion

*® @

Colloidosome

Core merging Evaporation or
dewetting
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emulsion
templating

multiple emulsion templating involves
encapsulating a droplet in another droplet of
an immiscible phase.

double emulsion, biphasic Janus particles,
multicore double emulsions and onion-
shaped multiple emulsions can be
controllably formed.

thermal, pH or chemical cues can be used to

gel, rupture or merge internal structures.

dewetting can transform multiple emulsions
into unilamellar liposomes, polymersomes

and colloidosomes.
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droplet generation
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payload control




payload control




T-1297.408 ms

Lag Chig 26 Chemistry 2011, 3. 428 Nature Chemistry 2011, 3, 43

exploitation of differences in the hydrodynamic resistance of the continuous phase and surface tension of the
discrete phase through the use of passive structures
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(A) oil inlet, (B) aqueous inlets, (C) hot zone, (D) d ro p I et P C R

annealing and template extension zone, (E) emulsion
outlet
Analytical Chemistry 2009, 81, 306



single cell analysis
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Chemical Communications 2007 1218

blank

cell suspension

oil

control of input streams can be used to
dose individual droplets with single or
small numbers of cells.

reduced droplet volumes remove problems
associated with dilution and allow for single
cell analysis.

passive loading of cells into droplets is
random and described by Poisson statistics.

burst width/height used to statistically
assess cell phenotype.
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cell photosensitizer viability assay agents
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IV-VI quantum dot synthesis

 real-time monitoring allows for rapid optimization of reaction conditions and the synthesis of high quality
PbS nanocrystals (emitting between 765-1600 nm) without any post-synthetic processing.

« NIR-emitting nanoparticles (with quantum yields above 30%) successfully used in Schottky solar cells with
power conversion efficiencies of 4%.

Chemistry of Materials 2014, 26, 2975
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CsPb(CI/Br), CsPb(I/Br),
CsPbCl, CsPbBr, . CsPbl,

FWHM
12nm-42nm

Norm. PL

400 450 500 550 600 650 700 750
Wavelength (nm)

« organic-inorganic lead halide perovskites possess
outstanding optoelectronic properties.

o
pe rovs klte « compositional tuning of luminescence from blue to red
is a key advantage over Cd-chalcogenides.
o
na no m ate rla Is - realization of high quantum yields does not require
electronic passivation, significantly reduces the
complexity of the synthetic procedure.

Nano Letters, 2016, 16, 1869
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perovskite nanoparticle synthesis

« combination of online analysis and rapid mixing allows the rapid mapping of the reaction parameters.

+ early-stage insight into the mechanism of nucleation suggests similarities with multinary metal chalcogenide

systems, albeit with much faster reaction kinetics.

Nano Letters, 2016, 16, 1869



post-synthetic info
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perovskite
nanoparticle
synthesis

* fine-tuning of PL of Cs,FA;_,Pb(Br,_,I,)3 NCs between
700 and 800 nm, with minimization of emission line
widths (<40 nm), and maximization of PL quantum

efficiencies (up to 89%) and phase/chemical
stabilities.

* rapid screening of FAPb(Cl,_Br,); NCs with stable

emission between 440-520 nm.

» microfluidically optimized conditions transferred to

batch-scale synthesis platforms.

Nano Letters 2018, 18, 1246; ACS Nano 2018, 12, 5504



Branin Function ACS Appl. Mater. Interfaces 2018, 10, 18869
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D =109 m2s!
C =5x10-"0M

the challenge...

small molecule in
water at room

match information
retrieval rate with

parameter

temperature 7 / information

generation rate

10 100

dimensional cross—section (um)

small volume detection
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Nano Letters, 2016, 16, 1869

photoluminescence is great!
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viscosity concentration temperature

Optics Letters 2011, 3

FLIM: maximizing info contrast

* high-speed fluorescence lifetime imaging of dynamic flows using viscosity-dependent lifetime of DASPI.

0N}

., 1187 Analytical Chemistry, 2015, 86, 10732 Angewandte Chemie 2007/, 119,22/8

« quantitative concentration mapping using line-scanning confocal microscopy with sub-micron resolution.
» spatially resolved 3D temperature distributions extracted via two-photon excitation.



automated
fluorescence
lifetime tracking
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caesium-based perovskite nanocrystals exhibit tunable
emission in the visible region and also display a fluorescence
lifetime that varies with anionic composition.

time-correlated single photon counting measurements in flow
allow rigorous extraction of fluorescence lifetimes.

on-line extraction of PL lifetimes achieved using a fitting
algorithm with sensitivity down to the single droplet level.

CsPb(Br/l), NCs CsPb(Br/l), NCs
o
[0y
O
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Chemistry of Materials 2020, 32, 27



t=20 us

Harold Edgerton, MIT, 1964

laser strobe
t=10 ms

CCD exposure

3 :
E stroboscopic
5 illumination can
significantly reduce
T NN 32 motion blur

D




A~ N N N N~~~
0 N O~ U1l A WDN -
— S — N S S~ ~— ~—

©

exploring
enzyme
catalysis

inject substrate and enzyme solutions.
accelerate droplets to 1 m/s.

rapid mixing by chaotic advection.
complete droplet mixing within 800 us.
droplet deceleration to 10 cm/s.
stroboscopic imaging of droplets
droplet imaging over long times.

fluorescence intensity plotted as a
function of time for each droplet.

droplets prevent dispersion and prevent
concentration gradients.
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droplet absorbance spectroscopy
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photothermal spectroscopy

single point absorbance measurements in fL-pL volume droplets at frequencies in excess of 10 kHz
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the use of microfluidic tools in
materials synthesis almost always
engenders significant enhancements
in efficiency, control, functionality &
throughput ...

... the marriage of microfluidic
systems, optical detection methods
and machine learning algorithms
offers a route towards the rapid and
robust generation of bespoke
materials.




